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Abstract
We study free massive fermionic ghosts, in the presence of an extended
line of impurities, relying on the Lagrangian formalism. We propose two
distinct defect interactions, respectively, of relevant and marginal nature. The
corresponding scattering theories reveal the occurrence of resonances and
instabilities in the former case and the presence of poles with imaginary residues
in the latter. Correlation functions of the thermal and disorder operators are
computed exactly, exploiting the bulk form factors and the matrix elements
relative to the defect operator. In the marginal situation, the one-point function
of the disorder operator displays a critical exponent continuously varying with
the interaction strength.

PACS numbers: 05.30.−d, 11.25.Hf

1. Introduction

After the seminal work by Ghoshal and Zamolodchikov [1] on integrable field theories in
the presence of a boundary, a great deal of attention has been devoted to studying finite-size
effects, due especially to their numerous applications to real physical problems. Quantum
field theories with extended line of defects1 generalize these boundary models, introducing
new and original features [11–14].

The presence of impurities can be mimicked by the action of a ‘defect’ operator, placed
along an infinite line in the Euclidean space. In the continuum limit and away from criticality,
massive excitations can either participate in bulk scattering processes or interact with the defect.
In general, due to the breaking of translational invariance, only reflection and transmission
are allowed. Such information can be encoded into a scattering theory enriched by adding
to the bulk S-matrix the amplitudes relative to these two new processes. The integrability of
the model, originally studied in [11], is guaranteed by imposing the factorization condition
which translates into a set of cubic relations called the reflection–transmission equations.
1 Actually, the critical behaviour of statistical systems with lines of defects has been widely studied in the past few
years [2–10].
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In particular, it has been shown that, for diagonal bulk scattering, non-trivial solutions for both
the reflection and transmission amplitudes can be found only in non-interacting bulk systems.
In this light, free field theories play a prominent role.

Recently, wide interest has grown around free ghosts in two dimensions, due to their
relevance to the study of disordered systems, polymer physics, quantum Hall states [15–19]
and above all as an example of the simplest non-unitary/logarithmic conformal field theories
[20, 21]. An exhaustive analysis of the fermionic and bosonic ghosts’ conformal field theories,
possessing respectively conformal charges c = −2 and c = −1, can be found in [22–24].

The main purpose of this work is to generalize a previously studied model of free massive
fermionic ghosts [25], in order to include the effects of inhomogeneities. In particular,
knowledge of the scattering amplitudes (and the spectrum of bulk excitations), along with
general analyticity properties and relativistic invariance, allows us to reconstruct thoroughly
the off-shell dynamics, by computing exactly correlation functions.

The first step towards the realization of this programme involves the derivation of the
transmission and reflection amplitudes. One way to compute them consists in solving a
bootstrap system of equations (unitarity, crossing and factorization). However, in this peculiar
case, the absence of stringent constraints leaves a broad arbitrariness in the choice of the
solutions. Fortunately, an alternative description is possible, in terms of the Lagrangian
formalism

A = AB + g

∫
d2xδ(x)LD(ϕi, ∂yϕi) (1)

where the bulk Euclidean action AB and the Lagrangian density LD , encoding all the
information relative to the scattering processes on the defect line,both depend on the local fields
of the theory. According to the strength of the coupling constant g, the line of inhomogeneities
can interpolate between bulk and surface statistical behaviour. If the defect interaction is
relevant (irrelevant), bulk (surface) behaviour is expected in the short-distance limit, while
the marginal case shares both regimes. In the following, relevant and marginal interactions
are proposed and exact expressions for the correlators of the most significant operators in
the theory are derived, by using the bulk form factors and the matrix elements corresponding
to the defect operator. In the former case, resonance phenomena occur in the spectrum of
excitations, while the latter perturbation is responsible for non-universal power laws in the
correlation functions of operators, non-local in the ghost fields.

2. Bootstrap approach

The model we are going to study is that of free massive fermionic ghosts [25] in the presence
of an infinite line of impurities placed at x = 0, which, after a rotation in the Minkowski plane,
will be identified with the time axis.

The bulk spectrum of the theory is composed of a doublet of free particles A and Ā

with mass m, bearing respectively U(1) charges ±1. Their scattering is ruled, in the bulk,
by the S-matrix S = −1. Due to the energy conservation, when a particle hits the defect it
can be either reflected or transmitted. All the processes involved in the theory can be recast
as a set of algebraic equations [11], relying on the algebra of the Faddeev–Zamolodchikov
operators. After the usual parametrization of the particle’s energy–momentum in terms of
the rapidity variable (e, p) = (m cosh θ,m sinh θ), we associate with excitations of type ‘a’
the formal operator Aa(θ) and with the defect line an operator D, playing the role of a zero
rapidity particle, during the whole time evolution of the system. The commutation relations,
associated with the defect algebra, read
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Aa(θ)D = Rb
a(θ)Ab(−θ)D + T b

a (θ)DAb(θ)

DAa(θ) = Rb
a(−θ)DAb(−θ) + T b

a (−θ)Ab(θ)D
(2)

where, in the first equation, Rb
a(θ) and T b

a (θ) denote, respectively, the reflection and
transmission amplitudes of an asymptotic particle ‘a’ entering the defect with rapidity θ ,
from the left. The second equation, describing the scattering of a particle hitting the defect
from the right, is obtained from the first one, after an analytic continuation θ → −θ in the
rapidity variable. Consistency of (2) implies the unitarity conditions

Rb
a(θ)Rc

b(−θ) + T b
a (θ)T c

b (−θ) = δc
a Rb

a(θ)T c
b (−θ) + T b

a (θ)Rc
b(−θ) = 0. (3)

Crossing relations read

Caa′′
Rb

a′′

(
i
π

2
− θ

)
= Sab

a′b′(2θ)Cb′b′′
Ra′

b′′

(
i
π

2
+ θ

)
T b

a (θ) = Cbb′
T a′

b′ (iπ − θ)Ca′a (4)

with an antisymmetric charge conjugation matrix, such that C2 = −1. As regards factorization
conditions, the main result of [11] guarantees that, for free theories diagonal in the bulk, the
reflection–transmission equations, descending from integrability, are automatically satisfied.

At this point, solving the bootstrap system of equations (2)–(4), we are able in principle to
determine the scattering amplitudes Rb

a and T b
a . However, a proliferation of solutions occurs,

due to the lack of constraints strong enough to fix the reflection and transmission matrices in a
closed form. A simplified version of this model (i.e. a purely reflecting theory which coincides
with a boundary problem [1]) helps in visualizing the situation. We introduce the following
parametrization of the reflection matrix components:

RA
A(θ) = f (θ)R(θ) RĀ

A(θ) = g(θ)R(θ)

RĀ
Ā
(θ) = f ′(θ)R(θ) RA

Ā
(θ) = g′(θ)R(θ).

(5)

Consistency of the bootstrap system gives rise to the conditions

R(θ)R(−θ) = [f (θ)f (−θ) + g(θ)g′(−θ)]−1

R(θ)R(−θ) = [f ′(θ)f ′(−θ) + g′(θ)g(−θ)]−1
(6)

f (θ)g(−θ) + g(θ)f ′(−θ) = 0 f ′(θ)g′(−θ) + g′(θ)f (−θ) = 0 (7)

− g′( iπ
2 + θ

)
g′( iπ

2 − θ
) = f ′( iπ

2 + θ
)

f
(

iπ
2 − θ

) = f
(

iπ
2 + θ

)
f ′( iπ

2 − θ
) = − g

(
iπ
2 + θ

)
g
(

iπ
2 − θ

) (8)

which allow a richness of solutions. A comparison with the well-established theory of
free massive Dirac fermions [1, 26], showing strong analogies with our ghost system, is in
order. Such a model, obtained as a particular limit of the sine-Gordon one, admits non-trivial
boundary Yang–Baxter equations, which provide a solution for the reflection amplitude in
terms of two parameters. In our case, starting directly from a free theory, it is impossible to
exploit factorization constraints, in order to fix the form of the R-matrix.

3. Lagrangian description

To overcome the ambiguities, intrinsically concerned with the bootstrap scenario, the
Lagrangian approach proves to be an alternative route.

The Euclidean action, describing the bulk dynamics, is that of free massless symplectic
fermions [23], supplemented by a mass term

AB = 1

2

∫
d2xJαβ(∂µ�α∂µ�β + m2�α�β). (9)
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�α, which are zero-dimensional anti-commuting fields (� and �̄), belong to the same doublet,
characterized by mass m, while Jαβ is an antisymmetric tensor. A detailed analysis of the
bulk system, including mode expansions of the basic fields, commutation relations and charge
conjugation properties can be found in appendix A.

Inhomogeneities affect the bulk physics introducing a Lagrangian density along the
impurity line, according to (1). A relevant and a marginal interaction will be the object of our
study in order to derive explicit expressions for the reflection and transmission amplitudes.

3.1. Relevant perturbation

Consider the system described by

A = AB +
g

2

∫
d2xδ(x)Jαβ�α�β (10)

where the dimension of the coupling constant g is [mass]. The equations of motion read

(∂µ∂µ − m2)� = gδ(x)� (∂µ∂µ − m2)�̄ = gδ(x)�̄. (11)

It is useful to split the fields into components belonging to the two intervals x < 0 and x > 0
(after rotation to the Minkowski space)

�(x, t) = θ(x)�+(x, t) + θ(−x)�−(x, t)

�̄(x, t) = θ(x)�̄+(x, t) + θ(−x)�̄−(x, t)
(12)

in order to derive the boundary conditions at x = 0, given by

�+(0, t) − �−(0, t) = 0 ∂x(�+(0, t) − �−(0, t)) = g

4
(�+(0, t) + �−(0, t)) (13)

�̄+(0, t) − �̄−(0, t) = 0 ∂x(�̄+(0, t) − �̄−(0, t)) = g

4
(�̄+(0, t) + �̄−(0, t)). (14)

The mode expansions (65), in terms of the operators A and Ā which interpolate the bulk
excitations, allow us to extract explicitly from (13), (14) the reflection and transmission
amplitudes 


A−(β)

Ā−(β)

A+(−β)

Ā+(−β)


 =

(
R(β, κ) T (β, κ)

T (β, κ) R(β, κ)

) 


A−(−β)

Ā−(−β)

A+(β)

Ā+(β)


 (15)

with

R(β, κ) = 1

sinh β + iκ

(−iκ 0
0 −iκ

)
T (β, κ) = 1

sinh β + iκ

(
sinh β 0

0 sinh β

)
(16)

and κ = g/4m. R and T, thus obtained, satisfy crossing and unitarity conditions.
A strong analogy with the free bosonic theory, extensively treated in [11], emerges. Apart

from a doubling of the matrix elements, the scattering amplitudes coincide. The main features
are the occurrence of resonances (i.e. unstable bound states possessing a real part in the
unphysical sheet, which do not appear as asymptotic particles of the theory) for κ > 1 and
phenomena of instabilities for κ < −1, characterized by poles with imaginary part fixed at
the value iπ/2, acquiring an increasing real part as κ is further depleted.

In the limit g → ∞ (κ → ∞), corresponding to the fixed boundary conditions
�(0, t) = 0 and �̄(0, t) = 0, the defect line acts as a purely reflecting surface. In contrast,
in the high-energy limit β → ∞, due to the relevant character of the perturbation, the theory
renormalizes to a bulk regime, the impurity line becoming transparent.
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3.2. Marginal perturbation

The Euclidean action

A = AB − ig
∫

d2xδ(x)(�∂y� + �̄∂y�̄) (17)

where g is a dimensionless coupling constant describes the effects of a marginal interaction
on the defect line. The equations of motion

(∂µ∂µ − m2)�̄ − 2igδ(x)∂� = 0 (18)

(∂µ∂µ − m2)� + 2igδ(x)∂�̄ = 0 (19)

lead to the following boundary conditions in the Minkowski plane:

�̄+(0, t) − �̄−(0, t) = 0 ∂x(�̄+(0, t) − �̄−(0, t)) = g∂t�(0, t) (20)

�+(0, t) − �−(0, t) = 0 ∂x(�+(0, t) − �−(0, t)) = −g∂t �̄(0, t). (21)

Exploiting again the mode expansions in terms of the operators A and Ā, the reflection and
transmission matrices assume the form

R(β, χ) = sin χ cosh β

cosh2 β − cos2 χ

(− sin χ cosh β − cos χ sinh β

cos χ sinh β − sin χ cosh β

)

T (β, χ) = cos χ sinh β

cosh2 β − cos2 χ

(
cos χ sinh β − sin χ cosh β

sin χ cosh β cos χ sinh β

) (22)

sin2 χ = g2

4 + g2
. (23)

Some remarks are in order. Action (17) is invariant under charge conjugation, implemented
by the transformations � → �̄ and �̄ → −�. Therefore, the relations RA

A = RĀ
Ā

and RĀ
A = −RA

Ā
, along with their analogous counterparts for the transmission matrix,

hold. On the other hand, the U(1) symmetry, manifestly displayed by the bulk action, is
broken by the defect interaction. As a consequence, scattering processes, which violate the
conservation of U(1) charges on the impurity line, can occur, allowing for non-zero off-
diagonal contributions. Exceptions to this behaviour concern the fixed (g → ∞, cos χ → 0)

and the free (g → 0, sin χ → 0) boundary conditions, where a restoration of the symmetry
takes place.

Let us turn our attention to the analytic structure of the reflection and transmission
matrices. Since the theory is non-unitary, a mechanism, akin to the one occurring in the scaling
Lee–Yang model [27], is expected to take place. In other words, residues, corresponding to
poles in the scattering amplitudes, are not supposed to be, a priori, real and positive. This
phenomenon is reminiscent of the non-Hermitian nature of the Hamiltonian associated with
the system and does not contrast with the unitarity requirement (3), preserving the meaning of
probability densities2.

2 Non-Hermiticity of the Hamiltonian implies, in particular, that its left eigenstates 〈nL| are not simply the adjoints
of the right ones |nR〉. Since, in addition, the Fock space states are also eigenstates of the charge-conjugation operator
with eigenvalues (±i)N ,N being the number of particles, the relation 〈nL| = 〈nR |C leads to the completeness
condition

∑
n |nR〉〈nL| = ∑

n |nR〉〈nR |(±i)n. On the other hand, equation (3), relying only on the assumption that in
and out-kets, constructed in terms of the asymptotic particles A and Ā, form a basis in the Hilbert space, is insensitive
to Hermiticity properties of the Hamiltonian.
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Poles appear both in the reflection and in the transmission amplitudes at β = iχ and
β = i(π − χ), with χ ∈ [0, π/2]. In the case of diagonal matrix elements, the corresponding
residues give

RA
A � RĀ

Ā
� T A

A � T Ā
Ā

� i

2

sin χ cos χ

β − iχ

RA
A � RĀ

Ā
� T A

A � T Ā
Ā

� i

2

− sin χ cos χ

β − i(π − χ)
.

(24)

Therefore, the pole at β = iχ is associated with a boundary bound state in the direct channel,
with positive binding energy eb = m cos χ , while the other one lives in the crossed channel.
Since eb < m for every value of the coupling constant, the boundary bound states are always
stable and the theory is free of resonances and instabilities of other nature. As regards
off-diagonal processes, the residues calculated at β = iχ assume the form

RĀ
A � T Ā

A � i

2

i sin χ cos χ

β − iχ
RA

Ā
� T A

Ā
� i

2

−i sin χ cos χ

β − iχ
(25)

while residues computed in the crossed channel display an overall minus sign. As mentioned
before, the additional factor ±i, appearing in the numerator, is a consequence of the anomalous
charge conjugation properties of the ghost fields.

Finally, a comment on the marginal nature of the interaction: performing the ultra-
violet limit, except for peculiar values of the coupling constant, all the scattering matrices’
components remain simultaneously finite.

4. Correlation functions

The problem at the heart of this paper concerns the computation of correlation functions of
the local fields φi(x, t), present in the theory.

To realize this idea, in order to fully exploit the knowledge of the bulk physics, it is worth
performing a rotation in the Minkowski plane (x → −it, t → ix), moving the defect line at
t = 0. In this new picture, the Hilbert space of states is the same as in the bulk and the effects
of impurities are taken into account by an operator D, placed at t = 0, which acts on the bulk
states. Therefore, correlation functions assume the form [11]

〈�1(x1, t1) . . .�n(xn, tn)〉 = 〈0|T [φ1(x1, t1) . . .D . . . φn(xn, tn)]|0〉
〈0|D|0〉 (26)

�i(xi, ti ) and φi(xi, ti ) being the fields in the Heisenberg representation,whose time evolutions
are ruled, respectively, by the exact Hamiltonian of the problem (bulk and defect interactions)
and the bulk Hamiltonian alone. As appears clearly, after inserting the completeness condition
of the bulk states in the right-hand side of (26), the above equation can be computed only in
terms of the form factors of the bulk fields and the matrix elements of the defect operator on
the asymptotic states. Another consequence of the axis rotation in the Minkowski plane is the
interchange of roles between energy and momentum. This affects the rapidity dependence of
the scattering amplitudes according to θ → (iπ/2 − θ). In compact notation it reads

R̂ab(θ) = Caa′
Rb

a′

(
i
π

2
− θ

)
T̂ ab(θ) = Caa′

T b′
a′

(
i
π

2
− θ

)
Cb′b. (27)

Let us recall here that asymptotic states are composed of neutral pairs A(θ)Ā(β), obtained
by acting with the corresponding operators A and Ā on the vacuum |0〉. Explicit expressions
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for the bulk form factors have been derived in [25], while the simplest matrix elements of the
defect operator on the bulk states are

〈A(θ)|D|A(θ ′)〉 = 2πT̂ AA(θ)δ(θ − θ ′)
〈Ā(β)A(θ)|D|0〉 = 2πR̂AĀ(θ)δ(θ + β) (28)

〈0|D|A(θ)Ā(β)〉 = −2πR̂AĀ(θ − iπ)δ(β + θ − 2π i).

In the remaining part of this section, we are going to study correlators of the operator

ω(x, t) = Jαβ

2
�α�β(x, t) (29)

associated with the massive perturbation of the critical bulk theory, and the one-point function
of the ‘disorder’ operator µ.

4.1. ω operator

The simplest correlation function involving ω is the one-point function, defined as

ω0(t, g) ≡ 〈ω(x, t)〉 =
∞∑

n=0

〈0|ω(x, t)|n〉〈n|D|0〉 (30)

the resolution of the identity explicitly reading

1 =
∞∑

n=0

1

(n!)2(2π)2n

∫ +∞

−∞
dθ1 . . . dβn|A(θ1), . . . , Ā(βn)〉〈Ā(βn), . . . , A(θ1)|. (31)

Since ω is the operator perturbing the critical theory in the bulk, it turns out to be proportional
to the trace of the stress–energy tensor [28]. This implies, for free theories, the remarkable
property that only two-particle states can be coupled to the vacuum

〈0|ω(x, t)|A(θ1)Ā(β1)〉 = 2π e−mt(cosh β1+cosh θ1)+imx(sinh β1+sinh θ1). (32)

Thus, exploiting (28), ω0 can be recast as

ω0(t, g) = 2
∫ ∞

0
dθR̂AĀ(θ) e−2mt cosh θ . (33)

Such a formula is amenable to discuss the different defect interactions.
For free boundary conditions, the reflection matrix is trivially zero and the one-point

function vanishes. In the case of fixed boundary conditions, instead, R̂AĀ(θ) = −1 and the
short-distance limit is easily derived,

ω0(t) = −2
∫ ∞

0
dθ e−2mt cosh θ = −2K0(2mt) → 2 ln(mt) mt → 0. (34)

Concerning the relevant perturbation, (33) assumes the form

ω0(t, κ) = −κ

∫ +∞

−∞
dθ

exp[−2mt cosh θ ]

cosh θ + κ
. (35)

In the limit of fixed boundary conditions (κ → ∞) the previous result (34) naturally follows
while, in order to study the large- and short-distance regimes for arbitrary κ , it could be
meaningful to manipulate a little bit the expression of ω0. The differential equation

∂ω0(t, κ)

∂(2mt)
− κω0(2mt, κ) = 2κK0(2mt) (36)

descending from (35), helps in deducing the large-distance limit. Substituting the
trial expansion ω0(t, κ) ∼ e−2mt (2mt)−γ

∑
al(2mt)−l into it, the asymptotic behaviour
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ω0 ∼ −2κ
1+κ

K0(2mt) is recovered as mt → ∞. On the other hand, the ultra-violet limit
emerges more clearly if we look at the expression

ω0(t, κ) = −2κ e(2mt)κ

∫ ∞

2mt

dη e−ηκK0(η). (37)

As far as mt → 0, ω0 always assumes finite values. Summarizing, in the infra-red regime
ω0 follows the asymptotic behaviour typical of the fixed boundary conditions, while for small
distances it remains finite, approaching zero as the coupling constant vanishes.

An analogous analysis can be performed for the marginal interaction. The one-point
function (33) specializes to

ω0(t, χ) = − sin2 χ

∫ +∞

−∞
dθ

sinh2 θ

cosh2 θ − sin2 χ
e−2mt cosh θ . (38)

The corresponding differential equation

∂2ω0(t, χ)

∂(2mt)2
− sin2 χω0(t, χ) = −2 sin2 χ

K1(2mt)

2mt
(39)

allows us to derive both the asymptotic limits. Exploiting a series expansion, as we did in the
relevant case, the low-energy regime leads to two different types of behaviour{

ω0(t, χ) → e−(2mt)(2mt)
√

π
2

2 sin2 χ

sin2 χ−1 sin2 χ 
= 1

ω0(t, χ) → −2K0(2mt) sin2 χ = 1.
(40)

As regards the ultra-violet limit, ω0(t, χ) ∼ 2 sin2 χ ln(2mt).
We turn now the attention to the two-point functions involving the operator ω. Two

different situations can occur.
Consider the case in which the operators lie on opposite sides of the defect line, i.e. t1 < 0

and t2 > 0. The correlator is given by

G1(ρ1, ρ2; g) =
∑
i,j

〈0|ω(ρ2)|i〉〈i|D|j 〉〈j |ω(ρ1)|0〉 (41)

with the collective variable ρ = (x, t). As before, the series contains only a finite number
of terms. In order to perform the calculations, we need the expression of the ‘defect’ matrix
element involving four particles

〈Ā(β1)A(θ1)|D|A(θ ′
1)Ā(β ′

1)〉 = (2π)2[T̂ AA(θ1)T̂
ĀĀ(β1)δ(θ1 − θ ′

1)δ(β1 − β ′
1)

− R̂AĀ(θ1)R̂
AĀ(θ ′

1 − iπ)δ(β1 + θ1)δ(β
′
1 + θ ′

1 − 2π i)]. (42)

Introducing a redefinition of variables in terms of t ≡ t2 − t1 and x ≡ x2 − x1, we finally
obtain

G1(ρ1, ρ2; κ) = −
[
∂F (mx,mt; κ)

∂(mt)

]2

+ ω0(t1, κ)ω0(t2, κ) (43)

F(x, t) =
∫ +∞

−∞
dθ

exp[−t cosh θ + ix sinh θ ]

cosh θ + κ
(44)

for the relevant perturbation and

G1(ρ1, ρ2; χ) = − cos4 χ

[
∂2F(mx,mt; χ)

∂(mt)2

]2

+ ω0(t1, χ)ω0(t2, χ) (45)

F(x, t) =
∫ +∞

−∞
dθ

exp[−t cosh θ + ix sinh θ ]

cosh2 θ − sin2 χ
(46)
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for the marginal one. In the limit of an infinitely reflecting surface (κ → ∞ and cos2 χ → 0),
only the vacuum expectation values of the two ω operators survive.

Another situation can happen, in which the two ω operators reside on the same half of
the Minkowski plane. Let us consider, for convenience, t2 � t1 > 0 and define t ≡ t2 − t1,
t̄ ≡ t2 + t1, x ≡ x2 − x1, r ≡

√
x2 + t2. The general expression for the two-point function is

G2(ρ1, ρ2; g) =
∑
i,j

〈0|ω(ρ2)|i〉〈i|ω(ρ1)|j 〉〈j |D|0〉. (47)

Following the lines traced in [11], after straightforward calculations, we end up with

G2(ρ1, ρ2; κ) = −[2K0(mr) + κF(mt̄,mx)]2 + ω0(t1, κ)ω0(t2, κ) (48)

in the relevant case and

G2(ρ1, ρ2; χ) = −
[

2K0(mr) + sin2 χ
∂2F(mt̄,mx)

∂(mx)2

]2

+ ω0(t1, χ)ω0(t2, χ) (49)

for the marginal perturbation. As appears clearly, the solutions found are invariant under
translations along the x-axis, consistent with the picture adopted, which preserves momentum.

4.2. Disorder operator

Finally, we examine the one-point function of the operator µ, which is only a specific example
belonging to the widest class of the ‘disorder’ operators, non-local with respect to the ghost
fields. The analysis concerning the leading behaviour of their correlators, which relies on
a ‘cluster’ expansion, is the main purpose of appendix C, while a detailed discussion about
them in bulk free theories can be found in [29–31] (ordinary complex fermions and bosons)
and [25] (fermionic and bosonic ghost systems). The one-point correlator can be written as
follows:

µ0(t, g) ≡ 〈µ(x, t)〉 =
∑

n

〈0|µ(x, t)|n〉〈n|D|0〉. (50)

In this case, µ couples the vacuum to neutral states, composed of an even number of excitations.
As a consequence, the sum does not truncate and, to explicitly evaluate (50), matrix elements
involving an arbitrary (even) number of particles

〈Ā(βn) . . . Ā(β1), A(θn) . . . A(θ1)|D|0〉 = (−)
n(n−1)

2 n!(2π)n
n∏

k=0

R̂AĀ(βk)δ(βk + θk) (51)

are required. In addition, since the defect operator D is responsible for processes involving
only absorption or emission of couples of particles with opposite rapidities, µ0 finally assumes
the form

µ0(t, g) =
∞∑

n=0

(−)n(n−1)/2

n!

∫
dβ1

2π
. . .

dβn

2π

n∏
k=1

[R̂AĀ(βk) e−2mt cosh βk ]

× f 1/2
n (−β1, . . . ,−βn, β1, . . . , βn). (52)

Exact expressions for the bulk form factors are given in [25]

f 1/2
n (θ1, . . . , θn, β1, . . . , βn) = 〈0|µ1/2(0)|A(θ1) . . .A(θn)Ā(β1) . . . Ā(βn)〉

= (−)n(n+1)/2|An| (53)

where |An| denotes the determinant of a matrix whose components read

Aij = 1

cosh θi−βj

2

. (54)



6644 P Mosconi

In order to discuss the effects due to the different interactions localized along the defect line,
(52) proves to be a good starting point.

Again, free boundary conditions lead to the trivial solution µ0 = 0. In the case of
fixed boundary conditions, it is possible to recover the leading short-distance behaviour of
the one-point function, in an exact way. The details of the calculation will be postponed to
appendix B, while here only the main results will be given. Since the reflection matrix
component R̂AĀ is trivially −1, exploiting the theory of Fredholm determinants [32], µ0 can
be recast as

µ0(t) =
∞∑

n=0

1

n!

∫ +∞

−∞

dθ1

2π
· · · dθn

2π
e−2mt

∑n
1 cosh θk |An| = det

(
1 +

1

π
V (t)

)
(55)

where the kernel is given explicitly by

V (θi, θj , t) = e(θi, t)e(θj , t)

2 cosh θi+θj

2

e(θ, t) = e−mt cosh θ . (56)

Alternatively, µ0 can be expressed as

µ0(t) =
∞∏
i=1

(
1 +

1

π
λ(i)(t)

)ai(t)

(57)

where λi are the eigenvalues of the integral operator V (t), distributed with multiplicity ai(t).
As far as mt is finite, V (t) is a square integrable operator possessing a discrete spectrum.
However, in the short-distance limit, mt → 0, this condition ceases to hold and the eigenvalues
become dense in the interval (−∞, +∞), with a multiplicity growing logarithmically as
∼ ln 1

mt
. Therefore, the disorder operator µ follows the leading power-law behaviour

µ0(t) ∼ C

(2t)xµ
(58)

with xµ = −1/4. This result is consistent with the intuitive idea that, upon approaching the
impurity line in the ultra-violet limit, the operator µ, characterized by the conformal weight(− 1

8 ,− 1
8

)
, starts interacting with its mirror image on the other side of the defect, along the

identity channel. As a final remark, we hint at the possibility of sub-leading logarithmic
corrections.

As regards the effects produced by the relevant perturbation, (52) behaves as

µ0(t; κ) =
∞∑

n=0

1

n!

(
1

π

)n ∫ +∞

−∞
dθ1 . . . dθn

[
n∏

k=1

κ e−2mt cosh θk

2(cosh θk + κ)

]
|An|

= det

(
1 +

1

π
V (t; κ)

)
(59)

with the kernel

V (θi, θj , t; κ) = e(θi, t; κ)e(θj , t; κ)

2 cosh θi+θj

2

e(θ, t; κ) =
√

κ

cosh θ + κ
e−mt cosh θ . (60)

In the short-distance limit, |V |2 becomes unbounded, the leading singularity being dictated by
the fixed boundary conditions’ one. Thus we find the same critical exponent as in the previous
case.

More interesting is the marginal situation. From general considerations extrapolated from
the Ising model [4, 5], the non-universal nature of the marginal interaction is expected to affect
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the non-local sector of the theory, inducing a critical exponent continuously dependent on the
coupling constant. Indeed, µ0 assumes the form

µ0(t; χ) =
∞∑

n=0

1

n!

(
sin2 χ

π

)n ∫ +∞

−∞
dθ1 . . . dθn

[
n∏

k=1

sinh2 θk e−2mt cosh θk

2(cosh2 θk − sin2 χ)

]
|An|

= det

(
1 +

sin2 χ

π
V (t; χ)

)
(61)

where

V (θi, θj , t; χ) = e(θi, t; χ)e(θj , t; χ)

2 cosh θi+θj

2

e(θ, t; χ) =
√

cosh2 θ − 1

cosh2 θ − sin2 χ
e−mt cosh θ .

(62)

Repeating an analysis similar to that carried out for the fixed boundary condition, but this time
with a parameter depending on the coupling constant, in front of the kernel in (61), we finally
obtain the critical exponent

xµ = 1

4
− 1

2π2
[arccos2(sin2 χ) + arccos2(− sin2 χ)]. (63)

5. Final remarks

In this paper we have studied the effects induced by a defect interaction on the free theory of
massive fermionic ghosts.

Working in the Lagrangian approach, we have dealt with two defect perturbations,
respectively, of relevant and marginal nature. Explicit expressions for the reflection and
transmission matrices have been derived. A careful analysis of their excitation spectra
has pointed out the possibility of resonances and instabilities in the former case, and the
occurrence of imaginary residues, relative to poles in the scattering amplitudes, in the latter
one. Successively, we turned our attention to the exact computation of correlation functions,
involving the most interesting operators in the theory, i.e. ω, local in the ghost fields, and µ,
belonging to one of the non-trivial sectors of the model. In the marginal situation, a non-
universal behaviour in the one-point function of the ‘ disorder’ operator µ has clearly emerged.
Finally, the last appendix has been devoted to the analysis of the most general ‘disorder’ fields
µα, characterized by non-locality index α. The leading short-distance behaviour of their
one-point function has been investigated by means of the ‘cluster’ expansion [33, 34].

It is worth noting that a delicate point of the present discussion concerns the comparison
between the bootstrap approach and the Lagrangian description, in order to derive explicit
expressions for the reflection and transmission amplitudes. In the former case, a richness
of solutions descends but their physical explanation and ‘classification’, in terms of a fixed
number of parameters related to the bulk S-matrix, results problematic. On the other hand,
the Lagrangian approach, though subjected to the strong restriction of dealing only with
local interactions, allows for a limited number of solutions, amenable to the easiest control.
For instance, besides the defect perturbations already introduced, analysing other kinds of
interactions could help in identifying new boundary conditions and, possibly, the operator
content of the boundary theory.

Finally, we conclude with a remark on the simplified problem of a pure reflecting surface.
As hinted at the end of the second section in relation to the free Dirac massive fermions, free
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theories, derived as the limit of interacting ones, admit a richer structure, as appears clearly
in the bootstrap approach. It would be tempting, in this boundary case, to find an interacting
theory, if any, behind the fermionic ghost model.
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Appendix A

In this section, some useful results on the bulk system of fermionic ghosts are collected. The
action is described by equation (9) where the symplectic form Jαβ reads explicitly

J−+ = −J+− = 1 Jαγ J γβ = δβ
α (64)

and the ghost fields �±, for later convenience, are redefined according to

�+ → � �− → �̄.

The mode expansions for the components �(±) and �̄(±), previously introduced (12), are

�(±)(x, t) =
∫

dβ
[
ā(±)(β) e−im(t cosh β−x sinh β) + a

†
(±)(β) eim(t cosh β−x sinh β)

]
�̄(±)(x, t) =

∫
dβ

[ − a(±)(β) e−im(t cosh β−x sinh β) + ā
†
(±)(β) eim(t cosh β−x sinh β)

] (65)

where the creation and annihilation operators are subjected to the anti-commutation relations{
a(±)(β), a

†
(±)(β

′)
} = 2πδ(β − β ′) {a(±)(β), a(±)(β

′)} = 0 = {
a
†
(±)(β), a

†
(±)(β

′)
}

{
ā(±)(β), ā

†
(±)(β

′)
} = 2πδ(β − β ′) {ā(±)(β), ā(±)(β

′)} = 0 = {
ā
†
(±)(β), ā

†
(±)(β

′)
}
.

(66)

Charge conjugation implemented on the Fock operators

Ca(β)C−1 = ā(β) Ca†(β)C−1 = ā†(β)

Cā(β)C−1 = −a(β) Cā†(β)C−1 = −a†(β)
(67)

induces the following transformations on the ghost fields � → �̄ and �̄ → −�. Finally, it
is useful, for notational reasons, to identify the operator creating the bulk excitations with the
excitations themselves

a†(β) → A(β) ā†(β) → Ā(β). (68)

Appendix B

In this appendix we evaluate the critical exponent of the disorder operator µ, corresponding
to the fixed boundary conditions. Let us consider the logarithm of equation (57)

ln µ0(t) =
∞∑
i=1

ai(t) ln

(
1 +

1

π
λ(i)(t)

)
(69)
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where, as explained before, λi(t) are the eigenvalues of the integral operator V (t), defined
by equation (56). In the limit mt → 0, such an operator turns out to be singular (it
loses the property of square-integrability) and consequently, its eigenvalues become dense
in (−∞, +∞). The first problem to be faced concerns finding the exact solution to the
eigenvalue equation∫ +∞

−∞
dθ2

1

2 cosh θ1+θ2
2

φ(θ2) = λφ(θ1) (70)

which, after proper changes of variables, assumes definitely the form∫ ∞

0
du

1

uv + 1
ξ(u) = λξ(v). (71)

The peculiar expression of the new kernel K(u, v) = 1
uv+1 suggests considering the Mellin

transform of both sides of (71) [35, 36]. We finally end up with a simpler eigenvalue equation
for the transformed quantities

(λ2 − K̃(s)K̃(1 − s))ξ̃ (s) = 0 (72)

where

K̃(s) = π

sin πs
0 < Re s < 1. (73)

Some comments could be useful to evaluate the spectrum. Since the kernel is a symmetric
function of its arguments and it is bounded, the spectrum has to be real and limited. Hence

λ±(τ ) = ±π

cosh πτ
τ ∈ (−∞, +∞). (74)

Now equation (69) assumes the form

ln µ0(t) = a(t)

∫ ∞

−∞
dτ

[
ln

(
1 +

1

π
λ+(τ )

)
+ ln

(
1 +

1

π
λ−(τ )

)]
(75)

where the multiplicity has been assumed to be uniform. Moreover, thanks to Mercer’s theorem,
a(t) ∼ 1

2π
ln 1

t
. At the end, the critical exponent is given by [37]

xµ = 1

2π

∫ ∞

−∞
dτ

[
ln

(
1 +

1

cosh πτ

)
+ ln

(
1 − 1

cosh πτ

)]

= 1

π2

[
π2

4
− 1

2
(arccos2(1) + arccos2(−1))

]
= −1

4
. (76)

Appendix C

In this last appendix we discuss generic ‘disorder’ operators µα , which pick up a non-locality
phase e±2π iα , when they are taken around the ghost fields in the Euclidean plane

�(z e2π i, z̄ e−2π i)µα(0, 0) = e2π iα�(z, z̄)µα(0, 0)
(77)

�̄(z e2π i, z̄ e−2π i)µα(0, 0) = e−2π iα�̄(z, z̄)µα(0, 0).

In particular, we are interested in deriving the leading short-distance behaviour of their one-
point function in the case of fixed boundary conditions, in order to perform a comparison with
the exact result previously obtained for the specific value α = 1

2 .

The starting point is equation (52), where the form factors f
1/2
n (−β1, . . . , βn) must be

replaced by the expression [25]

f α
n (−β1, . . . − βn, β1, . . . , βn) = (−)n(n+1)/2(sin πα)n e−(α− 1

2 )
∑n

i 2βi |An| (78)
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with |An| the determinant of the n × n matrix, whose components satisfy

Aij = 1

cosh βi+βj

2

. (79)

In compact form, we can rewrite

µα
0 (t) ≡ 〈µα(x, t)〉 =

∞∑
n=0

1

n!

∫ +∞

−∞
dβ1 . . . dβn e−ρ

∑n
j cosh βj gα

n (β1, . . . , βn) (80)

where ρ = 2mt and

gα
n (β1, . . . , βn) ≡ 1

(2π)n
(sin πα)n e−(α− 1

2 )
∑n

j 2βj |An|. (81)

These last two relations appear suitable to perform a ‘ cluster’ expansion, according to the
technique exposed, for instance, in [33, 34]. Therefore, the logarithm of (80) assumes the
form

ln µα
0 (t) =

∞∑
n=1

1

n!

∫ +∞

−∞
dβ1 . . . dβn e−ρ

∑n
j cosh βj hα

n(β1, . . . , βn) (82)

where the functions hα
n are proper combinations of the gα

n . For our purposes, we need only the
first few relations, which read explicitly [34]

gα
1 = hα

1

gα
12 = hα

12 + hα
1 hα

2 (83)

gα
123 = hα

123 + hα
12h

α
3 + hα

23h
α
1 + hα

31h
α
2 + hα

1 hα
2 hα

3 .

The key point of the standard ‘cluster’ expansion is that, since the functions hn depend
only on rapidity differences, they contain a redundant variable. Thus, it is possible, at all
orders, to extract the integral∫ +∞

0
dβ e−ρ cosh β = K0(ρ) (84)

which is responsible for the logarithmic behaviour ln 1
ρ

, as ρ → 0. The remaining integrals
multiplying such a result,

2
∞∑

n=1

1

n!

∫ +∞

−∞
dβ1 . . . dβn−1h

α
n(β1, . . . , βn−1, 0) (85)

give the approximate value of the critical exponent, provided that the ‘cluster’ condition

hn(β1, . . . , βn) = O(e−|βi |) (86)

is fulfilled, for Re βi → ±∞.
On the other hand, the fermionic ghost model displays a substantial difference. The

functions hα
n depend, by construction, on the sum of rapidities. Thus, only contributions

of even order in the series (82) admit a redundant variable, finally leading to a logarithmic
behaviour. The remaining terms, of odd order, provide convergent pieces, useful to reconstruct
the normalization constant of the one-point function.

In order to study explicitly the short-distance behaviour of µα
0 , we focus our attention on

the second-order contribution. All we need to know is

hα
12(β1, β2) = −

( sin πα

2π

)2 e−(2α−1)(β1+β2)(
cosh β1+β2

2

)2 . (87)
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Figure 1. − xα
α/2 as a function of the non-locality index α, for α ∈ [0, 1

2 ].

Hence, substituting in (82), after straightforward calculations, we finally end up with

ln µα
0 (t) = xα ln

1

2mt
(88)

where the critical exponent reads

xα = −1 − 2α

2π
tan(πα). (89)

For small values of the non-locality index, xα → −α/2. However, we are mainly interested
in the limit α → 1/2, where a comparison with the exact value x1/2 ≡ xµ = −1/4 = −0.25,
previously derived, is possible. Equation (89) leads to the result x1/2 ∼ −1/π2 ∼ −0.10,
independent of α. This large discrepancy suggests that the ‘cluster’ approximation, for this
particular non-locality index, fails to reproduce the exact critical exponent with accuracy, but,
nevertheless, hints at its correct sign. Finally, figure 1 displays the ratio −xα

α/2 , in order to make
visible deviations from the small-α behaviour.
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